

8th International Scientific Conference

Technics and Informatics in Education

Faculty of Technical Sciences, Čačak, Serbia, 18-20th September 2020

Session 3: Engineering Education and Practice Original paper

UDC: 004.42GNU Octave

286

Implementation of GNU Octave

in a University Course of General Physics

Vera P. Pavlović 1*, Jelena T. Ilić 1
1 University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

* vpavlovic@mas.bg.ac.rs

Abstract: This paper presents some examples of the implementation of an open-source software GNU

Octave, within a General Physics undergraduate course. The examples refer to writing a program in a Script

Editor for cases that include: 1) solving equations symbolically for a two-body or a multi-body system, 2)

different ways of restriction of a tabular and graphical display of obtained results to the ones that are

physically logical for a given problem and 3) creation of animations which describe certain physical

phenomena and processes. The coding was directed to prompt the user for specified values of various input

parameters, after running the script, in order to interactively reach conclusions concerning the investigated

physical dependences. The presented examples can be a good basis for the creation of small applets in

the field of General Physics. Such an application of programming in the field of General Physics and other

fundamental educational areas at technical faculties are an excellent pedagogical tool, enabling a better

understanding of both the programming process and the phenomena in specific physical and technical

fields.

Keywords: Octave; m-file; animation; function file; physics

1. INTRODUCTION

GNU Octave software is a multifunctional computer

tool featuring as a higher-level programming

language for data processing in the form of

matrices. Its mathematically-oriented syntax is

good enough for the development of algorithms

relevant for machine learning [1], yet sufficiently

intuitive to be easily mastered. The mentioned

software also contains convenient tools for data

visualization (graphical and tabular display of

results), with the possibility of further upgrades

and build-in functionalities to adjust the effects for

visualization and animation. Octave belongs to the

open-source software, within the GNU project and

it can be run on different operating systems such

as Microsoft Windows, Linux, macOS, or BSD. The

possibilities that it offers, especially with a number

of additional packages from the entire Octave Forge

collection (e.g.: Symbolic Package, I/O package,

etc.) which are available on the Internet, make it

quite comparable to certain commercially popular

computer tools, in view of software content and

quality. Therefore, Octave is one of the major free

alternatives to software packages such as MATLAB,

and in some segments even to software such as

Scilab, Origin or FreeMat [2-5]. Octave GUI

(Graphical User Interface) is developed to have a

working environment analogous to the one in the

MATLAB software package [1-7]. Despite the

various tutorials related to Octave software [1-5],

there is a lack of tutorials in which specific problems

in the field of general physics are presented as

examples. Therefore, having in mind the

importance of correlation of teaching in informatics

fields with specific examples from natural and

technical subjects, not only in the higher years of

undergraduate studies, but also within general

basics in the first year of studies, some applications

of the software GNU Octave that are related to

examples in general physics are considered in this

paper.

2. MAIN PRINCIPLES OF GNU OCTAVE

GNU Octave offers two basic modes of work. In the

first mode, one can keep entering commands in the

Command Window and Octave executes them

immediately. In the second mode one can write

series of commands and statements in the Editor

Window and save them into a script file (a so-called

m-file, due to the .m extension), executing the file

later as a complete unit, which also includes writing

functions and calling them. The basic data type in

Octave is a matrix, which general format can be

expressed as (mxn), where m is the number of

rows and n is the number of columns of the matrix.

All elementary operations are defined to support

working with matrices. Vectors and matrices are

used to store sets of values, all of which are the

same type. Since defining vectors in Octave

software involves creating one-dimensional arrays

of n numbers ((1×n) or (n×1) matrices), an

ordered one-dimensional array of possible (given)

mailto:vpavlovic@mas.bg.ac.rs

Session EEP Pavlović and Ilić

287

values of any physical quantity can be considered

in the Octave as a vector (row or a column vector),

regardless of whether the given physical quantity is

classified as a scalar (e.g.: time, coordinate, angle,

energy, etc.) or as a vector physical quantity (e.g.:

speed, acceleration, force, etc.). Appart from

regular matrix algebra, where matrices should be

conformable for a certain operation (e.g. for

multiplication, division, or squaring) within the

mathematical expression in the code, performing of

element-by-element operations on matrices is

possible, too. The matrix syntax, lists of basic

arithmetic and relational operators, lists of special

characters, special variables and constants, as well

as the list of most built-in functions, are the same

or very similar as in the MATLAB software package

[1-7]. The same observation can be made for the

typical decision making structures (including if, else

and elseif commands) and various repetition

control structures such as loop statements (e.g. for

loop, or while loop) for managing the process of

executing some part of a script file [1,6]. Regarding

solving a system of equations symbolically, the

shortest method, which usually gives the most

simplified expressions as solutions, involves the

use of the solve command. It implies the prior

application of the syms function for the definition of

a set of symbolic variables. The commands for

differentiation with respect to a particular variable,

as well as for performing integration, are of the

same form within the Octave software and in

MATLAB [1,6]. However, unlike MATLAB where the

short command table provides an easy tabular

display of results (e.g. values of directly and

indirectly measured quantities), in Octave such a

formatted display of results is possible only by

applying several other (more complicated)

methods, including the use of a couple of fprintf

statements [1,6]. The function fprintf can also be

used to save data from the created table, in the

form of a txt file. Although most of the commands

for plotting 2D/3D graphs and subgraphs, are the

same in both mentioned software packages, there

are still some differences. One of the advantages of

Octave is that in one call of the plot command (in

one command line) a significantly larger number of

variables can be specified than in MATLAB,

including a number of parameters for setting colors

and other properties of lines and points on the

graph. However, in MATLAB the additional so-called

set commands may be necessary for a more

detailed specification of the mentioned graph

properties (e.g. for the linewidth, etc.). On the

other hand, one of the shortcomings of the Octave

software is the lack of an appropriate solution for

adjusting an angle of axis labels on graphs, as well

as the lack of an adequate solution for updating

("refreshing") a legend on the same graph after

several consecutive runs of the given script file with

changed input data. Commands for printing text on

a graph, either by specifying coordinates for text

positioning (via the text command), or by using the

keyboard (via the gtext command and via clicking

on the chosen spot in the created Figure), are

completely analogous in both Octave and MATLAB

and can be modified in order to "refresh" the text

record on the graph, for each entering of new

values for certain input variables [1,6].

3. METHODS

Octave version 5.1.0 and the Octave Symbolic

Package 2.8.0 (Octave-forge-symbolic 2.8.0) were

used to create examples in this paper [1]. The

symbolic package was necessary for finding the

general form of solutions for a system of equations

(symbolic solutions). The command solve was used

for these purposes. Two methods were used to

define scalar variables. The first method involved

application of an assignment operator (operator =)

and an assignment statement, which defines a

scalar variable as: a numeric value, a string (a

separate sequence of characters placed between

single quotes), a mathematical expression, or a

function (e.g. by calling a specific function file). The

second way refers to setting the input scalar

variables via the command: input(), where the

appropriate string should be written in

parentheses, inviting (prompting) the user to enter

the value of a given variable after starting the

execution of a written set of commands (after the

RUN command). This value can generally be not

only a numerical value, but also a certain

mathematical expression, or a string which

indicates the color, linestyle or marker on the

graph, etc. Some independent variables were

defined as a range of a values, i.e. as row vectors

with equidistant elements (equally spaced

elements), in cases when it was of interest to

consider the output values of a dependent variable

for a whole range of values of a given input

variable. To define a vector with equally spaced

elements the colon operator was mostly used to

iterate through these values (e.g. t=first element:

increment: last element), but the linspace function

(t=linspace(first element, last element, number of

elements)) was applied as well. Depending on the

type of different input variables, operations on

individual elements of given vectors (matrices)

were used (when it was necessary) for the

calculation of dependent variables, which mainly

referred to the usage of operators such as:. *, or

./, or. ^. For the purpose of tabular presentation of

results, formatting was performed using a specific

block of fprintf functions. Within this, the visual

appearance of the table was adjusted using the

command '\t to separate the columns and the

command \n' (new-line character) to display the

following text in a new row. The formatting also

included setting the name of the table and columns,

as well as setting the number of potential digits and

the number of decimals (using commands of the

Session EEP Pavlović and Ilić

288

form % 7.4f or% 6.3f, etc., where the mark f refers

to the floats type of placeholder, the number after

the dot refers to the number of decimals, and the

number in front of the dot refers to the so-called

field width i.e. to the number of potential digit

places to be used in printing the results). Additional

commands for writing tabular data to a txt file were

also applied. For graphical representation of certain

physical dependencies, the commands plot and

plot3 were used, with or without commands for

subgraphs, depending on the needs in the

considered task. The appearance of lines and points

on the graph, the labels and other properties of the

axes, as well as appearance of the text on the

graph, were adjusted to spruce up the graph.

Limiting the graphs in order to display only those

values that have a physical meaning, as well as

achieving an animation effect, was done in several

ways, which is shown and discussed in the third

section. The usage of text and gtext commands

instead of the classic legend command, especially

for the purpose of comparing multiple curves (lines

and/or points) on the same graph, where the

curves are obtained for different input values, is

also discussed in the next section.

4. RESULTS

4.1. Example 1

The system shown in Figure 1a has been considered

as a first example. The following assumptions were

made: a friction between the body 1 and an inclined

plane is present, the masses of the pulley and the

thread are negligible, the thread is inextensible and

the friction in the pulley is absent. Creation of a

script file for this example has involved writing a

multi-part script. The first part of the script has

covered solving of the equation system, obtained

by the application of Newton’s second law in the

direction of the system acceleration and in the

direction perpendicular to it, for each of the two

bodies in the system. Solving the problem assumed

obtaining the solution algebraically, i.e. in symbolic

form, for acceleration and tension in the thread, for

the case of the direction of motion indicated in Fig.

1a. The intention was to present the solution in two

forms: first, in unicode form, that looks like a usual

handwritten equation, and second, in flat form,

suitable for further use in calculations of actual

numerical values in the Editor. The second part of

the script was aimed at: a) calculation of the

numeric values of the acceleration and thread

tension, for certain values of independent

variables, b) presentation of the results in a

formatted table in the Command Window, and c)

setting a condition that enables the occurrence of a

special warning in the case of obtaining negative

values of any elements of the row vector assigned

to acceleration. The last mentioned fact implies that

if any element of the acceleration row vector is

negative, the notification that only positive values

of accelerations have a physical meaning for the

assumed direction of motion of the system, should

appear in the Command Window. To achieve that

goal, first, certain fixed numerical values were

assigned to gravitational acceleration, the mass of

the body 1 and the dynamic coefficient of friction,

i.e. those variables were defined as scalars in

Octave script. The angle of an inclined plane was

defined within the certain range in degrees, as a

row vector in Octave script, while the so-called

input function was used to define the value of mass

m2 in kilograms. The third part of the script-file was

related to the creation of a 2D graph, with two

subgraphs, which presented the dependence of

system acceleration and thread tension on the

angle of the inclined plane, but only for those

elements of the row vectors that corresponded to

non-negative (≥0) elements of the row vector

assigned to acceleration. Along with that, the

intention was to prompt the user for an input of

arbitrary color, linestyle and marker on the graphs

after running the script, as well as to enable display

of information about the new input values of m2, on

each subgraph. Instead of the legend function,

which is not appropriately editable in Octave

software on the same graph, in the case of multiple

execution of a script file, an editable text command

has been chosen, which enabled display of the

newly entered value of variable m2 (via input

function) on a graph, in the selected (entered)

marker color. Additionally, standard font size

adjustments for tick labels, axes labels and

subgraph titles, as well as adjustments of grid line

appearance and x-axis range, in accordance with

the specified range of angles of an inclined plane,

were done. Fig. 2 shows a script that meets the

above requirements. In order to enhance the

visibility and the comprehensiveness of the

commands, the colors in the displayed script are

set according to the typical colors of MATLAB script.

For the sake of simplicity of writing marks within

the script, the sign k was used for the dynamic

coefficient of friction in the script, while the usual

symbol  was entered only in the graph title. For

the purpose of comparing the results obtained for

different values of m2, after repeated running of the

script, the commands were adjusted to allow

drawing of a new curve on the same graph for each

new execution of the script file, i.e. for each change

in the value m2 defined via the input function. A

rather complex form was chosen for the title of the

graph, in order to demonstrate the possibilities to

write the title in two lines. Fig. 1b shows graphs

derived from the above script, for two different

Session EEP Pavlović and Ilić

289

inputs of the m2 value.

Figure 1. a) Two-body system on an inclined
plane; b) Two subgraphs which present
the acceleration and the tensile force
versus angle of inclined plane,
respectively, for two inputs of the m2
value.

Since separation of the obtained results into those

that are physically logical and those that are

 illogical is important from the aspect of application

in physics, special attention has been paid to the

various forms of conditioning within the script that

enable display only of physically logical results for

the assumed movement direction of the system.

For that reason, several ways of the mentioned

conditioning have been considered in this example.

For instance, it can be noticed that instead of the

conditionality defined by the underlined commands

in the script in Fig. 2, usage of the following

commands was also possible, in order to achieve

the same effect:

 alpha(a<0)=[]; T(a<0)=[]; a(a<0)=[]; (1)

If the mentioned conditioning (presented in the first

or second form) were stated in front of the block of

fprintf commands for tabular formatting, only the

values corresponding to the non-negative

acceleration elements (a0) would be seen in the

table.

In order to obtain a graph only with dots, but in

animated presentation, several changes in the

script in Fig. 2 should be made. Namely:

- specification of the linestyle and linewidth would

not be needed in the input command "UserLMC"

and in the plot command, respectively;

- in front of the commands for the first subgraph,

opening of the for loop should be performed, i.e.

b)

a) 

1m

2m

Figure 2. Part of the script file for example 1

disp 'PART 1 - Solving a system of equations symbolically'
y='a (acceleration (m/s^2))', z='T (tension (N))'
syms g m1 m2 k alpha y z, sympref display unicode
[y,z]=solve(m1*y==m1*g*sin(alpha)-k*m1*g*cos(alpha)-z,m2*y==z-m2*g,y,z)
sympref display flat, y,z
disp ''PART 2 – Obtaining the values of acceleration and tension, for the given independent \
variables; formatted presentation of the results within the table in the Command Window ''
g=9.81, m1=3
m2=input('Enter a value of m2 in the range from 1 to 2 kg: m2= ')
k=0.1, alpha=30:2:60;
disp 'The masses are in (kg), the acceleration is in (m/s^2), the angle is in degrees.'
a=g*(m1*(sind(alpha)-k*cosd(alpha))-m2)/(m1+m2);
T=g*m1*m2*(1-k*cosd(alpha)+sind(alpha))/(m1+m2);
fprintf('\tResults\n')
fprintf('\tAlpha (degree)\t\tAcceleration (m/s^2)\tTension (N)\n')
fprintf('\t%6.3f\t\t\t%6.3f \t\t\t %6.3f\n',[alpha;a;T])
if any(a(:)<0) % if any(a(1,:)<0)
disp 'Only the obtained positive acceleration values are acceptable for the assumed motion direction!'
end
disp 'PART 3 – Creating a graph'
UserLMC=input('Enter a mark for the color, marker and linestyle on the graph: ')
UserTC= input('Enter a text color label on the graph, the same as for the marker color: ')
alpha(a<0)=NaN; a(a<0)=NaN; T(a<0)=NaN;
subplot(211)
plot(alpha,a,UserLMC, 'linewidth',1.5,'markerfacecolor','y')
set (gca,'fontsize',14), xlabel('\alpha (^o)','fontsize',18), ylabel('a (m/s^2)','fontsize',18)
title({'The acceleration versus angle of an incline','(m_1=3 kg, \mu=0.1)'},'fontsize',16)
grid on, xlim([30 60]), hold on
text(35,0.8*max(a),['m_2=' num2str(m2) 'kg'], 'color',UserTC,'fontsize',18)

subplot(212)
plot(alpha,T,UserLMC, 'linewidth',1.5,'markerfacecolor','y')
set (gca,'fontsize',14), xlabel('\alpha (^o)','fontsize',18), ylabel('T (N)','fontsize',18)
title({'The tension versus angle of inclined plane','(m_1=3 kg, \mu=0.1)'},'fontsize',16)
grid on, xlim([30 60]), hold on
text(35,0.9*max(T),['m_2=' num2str(m2) 'kg'], 'color',UserTC,'fontsize',18)

Session EEP Pavlović and Ilić

290

the following command should be entered: for i =

1: length (alpha)

- at the end of the script for the second subgraph,

the so-called pause command that specifies the

time interval between drawing adjacent points

should be entered, as well as the command for

closing the for loop;

- the plot command for the first subgraph should

be changed in order to display: alpha (i) and a (i)

(instead of alpha and a) and the analogue

modification should be entered in the plot

command for the second subgraph.

To avoid slowing down the animation, both text

commands should be placed after closing the for

loop. It would also be convenient to use the

simplest forms of titles of the subgraphs, or to omit

titles. It should be noted that instead of

conditioning that are presented by the underlined

commands in Fig. 2, or by the commands marked

as equation (1), additional alternatives are

possible. Namely, the analogous restriction could

also be achieved through the for loop if the

commands shown in Figs. 3a and 3b are used in

front of the subplot commands. This would also

imply the application of marks alpha(i), a(i) and

T(i) within the further commands for plotting, as

well as closing of the entire block for drawing of

graphs via a double command end (or via endif,

endfor commands).

Figure 3. The alternative parts of the script

4.2. Example 2

Example 2a

In the second example, a 3D animation of a

projectile motion trajectory (with no air resistance)

in the Cartesian coordinate system (DCS) has been

considered, where the projectile was launched at

an angle  from the origin of the coordinate system

and motion was performed in the x-z plane. The

intention was: 1) to prompt the user to enter the

values for the initial velocity (in m/s) and for the

launch angle  (in degrees) within the limited range

(0<<90), as well as 2) to enable a tabular display

of results in the form of a txt file and 3) to create

an animated graph (Fig. 5a). In order to visually

compare the results obtained for different values of

0 and , the commands that allow drawing of a

new animation on the same graph for each running

of the script, were included as well. The function

input() was also used for choosing a marker color,

marker symbol and marker size on the graph. The

rotate3d on command was applied to enable

manual rotation of a graph, in order to achieve

different observation perspectives. Instead of the

legend function, an editable text command was

used to enable the appearance of labels of the input

arguments on the graph in the selected marker

color and to show "refreshed" values of the initial

velocity and angle  (entered after each running the

script). The upper limit for the uniform row vector

that defined time values, was set to the time of

flight, according to the relevant equation. Saving a

created graph, as an image in tiff or gif format, was

also planned. Fig. 4 shows one of the forms of the

relevant script.

Figure 4. The script file for example 2a

Example 2b

The case of simultaneous movement of two

projectiles is more interesting than the previous

one. In this case, the trajectory of each projectile

is shown as an animated line, in the color picked

for the projectile (Fig. 5b). The movement of

projectiles starts at the same time, but the time of

flight is different, due to the different initial

arguments (initial velocity and launch angle) which

can be entered by the user after running the script.

The scaling of coordinate axes remains fixed during

the animation. An editable text command was used

in the same way as presented in a previous

example. This example implies the usage of the

majority of commands presented in Fig. 4, but

individually for each of the 2 projectiles. However,

it is necessary to introduce numerous new

commands as well. For instance, in order to achieve

the effect of animated drawing of a line, it is

necessary to define a row vector assigned to the y

coordinate of each projectile (zero vector, of the

same length as vectors t and z). Since row vectors

t1 and t2 are generally not of the same length, and

since it is not possible to know in advance which

length will be the longer one, the iteration from 1

to n1=min([length(t1); length(t2)]), and

subsequent iteration from n1 to

n2=max([length(t1); length(t2)]), within the one

for i=1:length(alpha), if a(i)>=0

for i=1:length(alpha), if a(i)<0

a(i) = NaN; T(i)=NaN; else

a)

b)

g=9.81; x0=0; z0=0;
v0=input('Enter a value for initial velocity in the range 2-5 m/s: ')

theta=input("Enter a launch angle of a projectile \

in the range from 30 to 60 degrees: ")

tR=2*v0*sind(theta)/g; % time of the flight
t=0:0.01:tR;

v0x=v0*cosd(theta); v0z=v0*sind(theta);

x=x0+v0x*t; z=z0+v0z*t-(1/2)*g*t.^2; y=0;

UserMC=input("Enter a mark for the marker color \
and marker type on the graph: ")

UserMS=input('Enter a mark for the marker size on the graph: ')

UserTC=input ("Enter a mark for the color of the text on the graph,\

the same as the marker color: ")

file1 = fopen('Results.txt', 'w');

fprintf (file1,'\tResults:\n');

fprintf (file1,'\tTime\t\tx coordinate\tz coordinate\n');

fprintf (file1,'\t%6.3f \t\t%6.3f\t\t%6.3f\n', [t; x; z]);

fclose (file1);

for i=1:length(t)

plot3 (x(i),0,z(i), UserMC, 'markersize',UserMS), hold on,
if i==1

set (gca,'fontsize',12), xlabel ('x coordinate [m]', 'fontsize',14)
ylabel ('y coordinate [m]', 'fontsize',14)

zlabel ('z coordinate [m]', 'fontsize',14)

title ('3D animation of a projectile motion trajectory', 'fontsize',16)

grid on, ylim([-1 1])
text (0.01,0.7,max(z),['v_0='num2str(v0)'m/s,\theta='num2str(theta)'^o'],

'color',UserTC)

end

pause(0.01), end
rotate3d on, print(figure(1), 'Figure_projectile motion.tiff')

Session EEP Pavlović and Ilić

291

unified for loop (by application of if and elseif

commands, which is not presented here) or within

the two separated for loops (Fig. 6), can be a good

solution for the achievement of the required

animation on the 3D graph. After the last command

in Fig. 6, commands for writing text on a graph

(instead of a legend) would follow, accompanied

with commands for manual rotation of a graph, for

saving a graph as an image, etc.

In the commands related to animation of a graph

in example 2b (Fig. 5b), it is especially important

to pay attention to:

- the fact that writing a function handle for a plot

function, as well as the adjusting of graph axes and

title out of the for loop (in front of the loop),

enables higher speed of the animation;

- the way of achieving fixed scaling on the axes

during the animation, because this must provide

visibility of simultaneous drawing of two

trajectories on the same graph, where the range

and maximum height of the projectile depend on

the value of the initial velocity and launch angle at

each new running the script;

- content of h=plot3() command in front of the first

for loop, and the way of adjusting this command

through the loops.

Such a combination of commands enables that

during the flight of the first projectile simultaneous

drawing of the animated trajectories of both

projectiles could be seen, while further animation

implies continued drawing of the second projectile

trajectory with the retained appearance of the

trajectory of the first projectile.

4.3. Example 3

Example 3 refers to the creation and application

(calling) of a function file, in tasks where projectile

motion is considered. An example of a functional

m-file that should enable calculation of the

projectile horizontal range in an arbitrary task (for

the launch from the origin of the coordinate

system) is presented in Fig. 7. The chosen function

name and the function file name is:

f_Range_ProjectileMotion. The input variables in

this function are the initial velocity, the angle of

ejection in degrees and the gravitational

acceleration. After calling this function in the

Figure 6. Part of the script file for example 2b

UserC1=input ('Enter a mark for the color of the first projectile on the graph: ')
UserC2=input ('Enter a mark for the color of the second projectile on the graph: ')
n1=min([length(t1); length(t2)]); n2=max([length(t1); length(t2)]);
x_low=min([x1(:); x2(:)]); x_high=max([x1(:); x2(:)]);
z_low=min([z1(:); z2(:)]); z_high=max([z1(:); z2(:)]);
figure
h=plot3(x1(1),y1(1),z1(1),UserC1,x1(1),y1(1),z1(1),'o',x2(1),y2(1),z2(1),UserC2,x2(1),y2(1),z2(1),'o');
set (gca,'fontsize',12), xabel('x coordinate [m]','fontsize',14), ylabel('y coordinate [m]','fontsize',14),
zlabel ('z coordinate [m]','fontsize',14), title ('3D animation of a projectile motion trajectory','fontsize',16), grid
on, axis([x_low x_high -1 1 z_low z_high]); hold on
for i=1:n1;
set(h(1), 'xdata',x1(1:i), 'ydata',y1(1:i), 'zdata',z1(1:i),'linestyle','--')
set(h(2), 'xdata',x1(i), 'ydata',y1(i), 'zdata',z1(i),'color', UserC1,'MarkerFaceColor',UserC1,'markersize',12)
set(h(3),'xdata',x2(1:i),'ydata',y2(1:i),'zdata',z2(1:i),'linestyle','--')
set(h(4), 'xdata',x2(i), 'ydata',y2(i), 'zdata',z2(i),'color', UserC2,'MarkerFaceColor',UserC2,'markersize',12)
pause (0.01), end
for i=n1+1:n2;
set(h(3),'xdata',x2(1:i),'ydata',y2(1:i),'zdata',z2(1:i),'linestyle','--')
set(h(4),'xdata',x2(i),'ydata',y2(i),'zdata',z2(i),'color',UserC2,'MarkerFaceColor',UserC2,'markersize',12)

pause (0.01), end

Figure 5. Presentation of two approaches (a and b) to 3D animation of projectile motion trajectory. The left graph
(a) results from the two subsequent runns of the same code. The right graph results from the one single
running of the more complex code. On both graphs different colors correspond to different sets of initial

arguments (v0 and ).

b)
a)

Session EEP Pavlović and Ilić

292

arbitrary script file (via the command:

xR=f_Range_ProjectileMotion(v0,theta,g)), the

function accepts specific numerical values related

to its input variables (given in the form of scalars

or vectors), processes them and generates numeric

values of the projectile range.

Figure 7. Part of the script

Thus, if in an arbitrary task the launch angle is

given as a row vector, while the value of the initial

velocity is defined via the input function, the

commands shown in Fig. 8 could be used to

determine the launch angle at which the projectile

reaches the maximum range.

Figure 8. Part of the script

The function analogue to the one presented in Fig.

7 (with the same input variables) can be written for

the time of flight as well, where the body of the

function would be defined via the time of flight

equation.

4.4. Example 4

The fourth example deals with the way of creating

an animation in which:

- in the upper subgraph, an animation effect of the

time dependence of the velocity is synchronized

with the motion of particle allong x axis, where the

motion is at first uniformly accelerated and then

slowed down (with the same absolute value of

acceleration);

- in the lower subgraph an animation effect of the

time dependence of the acceleration can be seen.

The script file includes the input function, to prompt

the user to enter the acceleration value and the

upper limit (tf) of the row vector assigned to time

values in a certain range. The additional commands

for auxiliary lines on both subgraphs are also

included. The graph that is presented in Fig. 10 is

function

xR=f_Range_ProjectileMotion(v0,theta,g)

xR=(sind(2*theta).*v0.^2)/g;

end

xRmax=max(xR); for i=1:length(xR),

if xR(i)==max(xR)

theta_xRmax=theta(i); end, end

Figure 9. Part of the script file for example 4

tf=input('Enter an integer value of the upper limit of the time interval, in the range 7 - 10 s: tf= ')
t=0:0.1:tf;
tB=tf/2 % the same as: tB=max(t)/2
th=0:0.1:tB; n=length(th)
a=input('Enter an acceleration value in the range from 0.4 to 2 m/s^2: a= ')
% The following equations can be applied to the motion in the first half of total time
 v=a*t; x=a*(t.^2)/2; y=zeros(1,length(t));
 xB=a*(tB.^2)/2; vB=a*tB;
 a1=a*ones(1,length(th)); a2=-1*a*ones(length(th),length(t));

 figure
 subplot(211)
 h1=plot(t(1),v(1),'b-',t(1),v(1),'c-');
 set(gca,'fontsize',14), xlabel('time (s)','fontsize',18), ylabel('velocity (m/s)','fontsize',18)
 xlim([0 tf]) % or xlim([0 max(t)])
 ylim([0 1.5*vB])
 line('xdata',[tB,tB],'ydata',[0,1.5*vB],'linestyle','--','linewidth',1)
 grid on, hold on

 subplot(212)
 h2=plot(t(1),a1(1),'b-', t(1),a2(1),'c-');
 set(gca,'fontsize',14), xlabel('time (s)','fontsize',18),
 ylabel('acceleration (m/s^2)','fontsize',18), xlim([0 tf]), ylim([-2*a 2*a])
 line('xdata',[0,tf],'ydata',[0,0],'linewidth',1)
 line('xdata',[tB,tB],'ydata',[-2*a,2*a],'linestyle','--','linewidth',1)
 grid on, hold on

disp 'Select a point for the tB label on the first subplot, using a keyboard'

for i=1:n
set(h1(1),'xdata',t(1:i),'ydata',v(1:i),'linewidth',3)
set(h2(1),'xdata',t(1:i),'ydata',a1(1:i),'linewidth',3)
pause(0.01), end

% The following equations can be applied to the motion in the second half of total time
v=vB-a*(t-tB); x=xB+vB*(t-tB)-a*((t-tB).^2)/2; y=zeros(1,length(t));

for i=n:length(t)
 set(h1(2),'xdata', t(n:i),'ydata', v(n:i),'linewidth',3)
 set(h2(2),'xdata',t(n:i),'ydata',a2(n:i),'linewidth',3)
pause(0.01), end

gtext(['t_B'],'fontsize',14)

Session EEP Pavlović and Ilić

293

the snapshot made at the end of the animation, in

the case when the values a=1 m/s2 and tf=10 s

were entered after running the script.

Figure 10. Final snapshot of the animated graph
related to accelerated/decelerated
motion of the particle

Fig. 9 shows the most important parts of the script

used to create this animation. All commands,

except of the couple of the so-called set functions

that define more specified way of performing plot

function, are placed out of the loops, in order to

speed up the animation. If the ordinate axis range

is not limited for the lower subgraph, usage of the

gtext command that should replace the legend on

the graph, could be more convenient than text

command. Utilization of the gtext command is also

particularly convenient in examples such as 2a,

because due to different values obtained on the

ordinate (with different input values) it is not easy

to predict the coordinates required for an

appropriate text position.

5. CONCLUSION

The paper presents some examples of the

application of an open-source GNU Octave software

within the general physics course in undergraduate

studies. GNU Octave is a multifunctional computer

tool designed to process data in the form of

matrices and is a major alternative to commercial

software packages such as MATLAB. To

demonstrate some of the possibilities of applying

programming via Octave software within the

undergraduate course of general physics, the

creation of script files in the examples from the field

of mechanical motion has been chosen in this

paper. The examples have included: finding the

general form of solutions for a system of equations

(symbolic solutions), tabular formatting of results

for a specific set of values of input variables, saving

formatted results in the form of ASCII files, as well

as 2D and 3D graphical display of results with

animation effects for certain physical phenomena

and processes. A brief glance at the creation and

application of function files is also given. The

importance to create script files that prompt the

user to enter new values of various input

parameters after each starting of the execution of

a given script, in order to compare the changes on

the graphs, and to reach a better understanding of

certain physical relations and laws, was

emphasized as well. Special attention has been

paid to set various types of conditions that enable

showing only results that have a physical meaning

for the considered physical problem in the table

and/or graph. Additionally, application of a decision

making structure had been also used, for achieving

targeted occurrence of warning notes in a case of

obtaining physically illogical solutions of certain

equations, as well as for performing animation

according to different kinematic equations during

the different time intervals. The animations and

emphasized observations presented in this paper

are methodologically important examples of

developing and correlating knowledge in the field of

informatics and general physics. The considered

examples also represent a good educational basis

for creating applets in general physics and related

teaching areas.

ACKNOWLEDGEMENTS

This work was financially supported by the MESTD

of the Republic of Serbia under the contract 451-

03-68/2020-14/200105.

REFERENCES

[1] Eaton, J. W., Bateman, D., Hauberg, S.,
Wehbring, R. (2019). GNU Octave, Edition 5 for
Octave version 5.1.0

[2] Stahel, A. (2019). Octave and MATLAB for
engineers, Bern University of applied sciences,

Switzerland.

 https://web.sha1.bfh.science/Labs/PWF/Docu
mentation/OctaveAtBFH.pdf

[3] Arras, K. (2009). Octave/Matlab tutorial, Social
Robotic Lab, University of Freinburg.
http://srl.informatik.uni-
freiburg.de/downloadsdir/Octave-Matlab-

Tutorial.pdf

[4] Linge, S., Langtangen, H. P. (2016).

Programming for computations −
MATLAB/Octave, a gentle introduction to
numerical simulations with MATLAB/Octave,
Springer Open.

[5] Quarteroni, A. and Saleri, F. (2010). Scientific
computing with MATLAB and Octave, Second

edition, Springer International edition,
Springer.

[6] MATLAB numerical computing, Tutorials point –
simply easy learning, 2014 Tutorials Point (I)
Pvt. Ltd., www.tutorialspoint.com

[7] Pratap, R. (2010). Getting started with MATLAB:
a quick introduction for scientists and engineers,

Indian edition, Oxford University Press.

